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1 Number theory

1.1 Modular arithmetic

• Let n be a positive integer, a ≡ r mod n means that n divides a− r.

• If a1 ≡ r1 and a2 ≡ r2, then a1a2 ≡ r1r2. Because a1 = q1n + r1, a2 = q2n + r2 , now multiply
them and we can see that a1a2 − r1r2 is divisible by n.

• The operation ”Multiplication modulo n” (let it be *) is defined as : a ∗ b = r , where r is such
that ab ≡ r mod n and 0 ≤ r ≤ n− 1. (For example if n = 5 then 3 · 2 = 1 as 3× 2 = 6 which
is 1 mod 5)

1.2 Bezout’s Lemma

Classic Statement: Let a, b be coprime integers, then there exist integers x, y such that ax+ by = 1.

Equivalent Statement: Let n be a positive integer and a be an integer such that gcd(a, n) = 1,
then there exists an x such that ax ≡ 1 mod n. [10pt]

Proof: We shall prove the classical version and the equivalent statement shall follow directly.
Let S = {au+ bv : u, v ∈ Z, au+ bv > 0}.
As S is non-empty, it must contain a smallest element say d = au′ + bv′.
If d|a and d|b then d = 1 as they are coprime and we are done. So for the sake of
contradiction assume d does not divide atleast one of a and b, say d does not divide a.

Now let a = dq + r where 0 < r < d (by Euclid’s division lemma)
Then we have r = a− dq = a− aqu′ − bqv′ = a(1− qu′) + bqv′ which is in S contradicting
the fact that d was the smallest.
Hence d = 1 and we get the required result.

1.3 Exercises (must do to understand next section)

1. Consider Zn = {0, 1, · · · , n− 1} and we define the operation to be ”addition modulo n”. Essen-
tially a · b = r if a + b ≡ r mod n and 0 ≤ r ≤ n − 1. Check that this is a binary operation on
Zn and it makes it into a group.

2. Using Bezout’s Lemma show that the set of elements x in Zn = {0, 1, · · · , n − 1} such that
gcd(x, n) = 1 form a group under the operation multiplication modulo n. This group is denoted
by Z∗

n

3. If n = p is a prime then show that Z∗
p = {1, 2, · · · , p− 1}

1.4 Fermat’s theorem and Euler’s theorem

Consider the group Z∗
p formed by the elements {1, 2, 3..., p−1} under the group operation multiplication

modulo p (where p is a prime).
From week 2 we know that, the order of an element of a finite group divides the order of that group
(that is the number of elements in the group). For any element b of the group Z∗

p, let the order of b
be m, i.e bm = 1, and since m divides p− 1 (the order of G), hence bp−1 is also equal to 1.

1.4.1 Fermat’s Little theorem

For any a ∈ Z and let p be a prime not dividing a, then p divides ap−1 − 1 , i.e. ap−1 ≡ 1 mod p.

Proof: Let a ≡ r mod p for some r ∈ {1, 2, 3..., p− 1}, then ap−1 ≡ rp−1 mod p , but from above
discussion we have rp−1 ≡ 1 mod p, hence ap−1 ≡ 1 mod p. Thus proved.
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Let ϕ(n) be the number of positive integers less than n and co-prime to n. Consider the group Z∗
n (as

defined in above exercises), the order of this group is ϕ(n), and for any element b ∈ Z∗
n let its order

be m, we have bm = 1 and since order of element divides order of group, m divides ϕ(n), and hence
bϕ(n) = 1.

1.4.2 Euler’s theorem

Euler did a generalisation of Fermat’s theorem. If a is an integer relatively prime to n, then aϕ(n) − 1
is divisible by n , i.e aϕ(n) ≡ 1 mod n.

Proof: Suppose a ≡ b mod n, where 0 ≤ b ≤ n− 1, then aϕ(n) ≡ bϕ(n) mod n and as a is co-prime
to n, and n divides a − b, so b must also be co-prime to n thus b ∈ Z∗

n , thus from above
discussion we have bϕ(n) ≡ 1 mod n , hence aϕ(n) ≡ 1 mod n. Hence proved.

2 Orbit-Stabiliser theorem and Burnside’s lemma

2.1 Group action on a set, orbits, stabilizer

Consider a group G and a set S. An action of G on S is a mapping * from G× S → S, such that:

• e ∗ s = s ∀s ∈ S

• (g1g2) ∗ s = g1 ∗ (g2 ∗ s) ∀s ∈ S and g1, g2 ∈ G

What are orbits?
Define a relation ∼ on S , such that s ∼ t if and only if ∃g ∈ G such that g ∗ s = t. This relation turns
out to be an equivalence relation. It partitions the set S into equivalence classes called as orbits.

What are stabilisers? For an element s in the set S, the stabilizer of s is the set of elements
g ∈ G such that g ∗ s = s. Note that a stabilizer(for any s) is a subgroup of G.

2.2 Example

Consider a triangle in the plane. Each vertex can be coloured either red or blue.
Let S denote all possible configurations. So, S = {BBB,BBR,BRB,RBB,BRR,RBR,RRB,RRR}.

Figure 1: Elements of S

Let G = {e, r, r2} denote the symmetries of triangle, that is identity (e), rotation by 120◦(r) and
rotation by 240◦(r2).
Now we let G act on S in the natural way. For example r(BRR) = RBR, r(BBB) = BBB.
Simply apply that transformation on the triangle and see the new colouring.

3



2.3 Orbit-Stabilizer theorem

Let s be any element of set S.
The no.of elements in the orbit of s is equal to the Index of stabilizer of s.

Note: Index of a subgroup H of G is the value |G|
|H| , i.e ratio of orders of group and subgroup.

Proof: Let H be the stabilizer of s. So, H is a subgroup of G. Note that g′ ∗s = g∗s ⇐⇒ g′ ∈ gH,
where gH is the left coset of H containing g. Now, consider the equivalence relation ∼∗ such
that g1 ∼∗ g2 ⇐⇒ g′ ∗ s = g ∗ s. So, it implies g1 ∼∗ g2 ⇐⇒ g′ ∈ gH. Hence, no. of

equivalence classes under this relation are nothing but no. of left cosets of H, which is |G|
|H|

(Index of H). Let Gs be the set {g ∗ s|g ∈ G}. No. of distinct elements in Gs is equal to no.

of equivalence classes , i.e |G|
|H| , and also no. of distinct elements in Gs is nothing but no. of

elements in orbit of s. Hence proved.

2.4 Burnside’s lemma

Let g be an element of G, define Xg as the set of elements of S fixed by g , i.e Xg = {x ∈ S|g ∗x = x}.
If r is the no. of orbits in S, then

r · |G| =
∑
g∈G

|Xg| (1)

2.5 Exercises

1. Prove that example 2.2 is a valid group action.

2. Prove Burnside’s lemma. (Hint : Count RHS in a different way)

3. Prove that the relation ∼ defined previously as s ∼ t if and only if ∃g ∈ G such that g ∗ s = t ,
is an equivalence relation.
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